Title: Learning to Recognize Visual Objects with Microstimulation in Inferior Temporal Cortex Authors: It Stimulation during Learning
نویسندگان
چکیده
The malleability of object representations by experience is essential for adaptive behavior. It has been hypothesized that neurons in inferior temporal cortex (IT) in monkeys are pivotal in visual association learning, evidenced by experiments revealing changes in neural selectivity following visual learning, as well as by lesion studies, wherein functional inactivation of IT impairs learning. A critical question remaining to be answered is whether IT neuronal activity is sufficient for learning. To address this question directly, we conducted experiments combining visual classification learning with microstimulation in IT. We assessed the effects of IT microstimulation during learning in cases where the stimulation was exclusively informative, conditionally informative, and informative but not necessary for the classification task. The results show that localized microstimulation in IT can be used to establish visual classification learning and the same stimulation applied during learning can predictably bias judgments on subsequent recognition. The effect of induced activity can neither be explained by direct stimulation-motor association nor by simple detection of cortical stimulation. We also found that the learning effects are specific to IT stimulation, as they are not observed by microstimulation in an adjacent auditory area. Our results add the evidence that the differential activity in IT during visual association 3 learning is sufficient for establishing new associations. The results suggest that experimentally manipulated activity patterns within IT can be effectively combined with ongoing visually induced activity during the formation of new associations.
منابع مشابه
Learning to recognize visual objects with microstimulation in inferior temporal cortex.
The malleability of object representations by experience is essential for adaptive behavior. It has been hypothesized that neurons in inferior temporal cortex (IT) in monkeys are pivotal in visual association learning, evidenced by experiments revealing changes in neural selectivity following visual learning, as well as by lesion studies, wherein functional inactivation of IT impairs learning. ...
متن کاملEffects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons.
Learning is critical for fast and efficient object recognition in primates. To understand the neuronal correlates of behavioral improvements due to training, we recorded the responses of single neurons in the inferior temporal (IT) cortex of monkeys that were trained to recognize briefly presented, backward-masked objects. First we investigated training effects that are specific to the objects ...
متن کاملSpatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system.
We show in a unifying computational approach that representations of spatial scenes can be formed by adding an additional self-organizing layer of processing beyond the inferior temporal visual cortex in the ventral visual stream without the introduction of new computational principles. The invariant representations of objects by neurons in the inferior temporal visual cortex can be modelled by...
متن کاملPrefrontal cortex function in the representation of temporally complex events.
The frontal cortex and inferior temporal cortex are strongly functionally interconnected. Previous experiments on prefrontal function in monkeys have shown that a disconnection of prefrontal cortex from inferior temporal cortex impairs a variety of complex visual learning tasks but leaves simple concurrent object-reward association learning intact. We investigated the possibility that temporal ...
متن کاملUnsupervised Natural Visual Experience Rapidly Reshapes Size-Invariant Object Representation in Inferior Temporal Cortex
We easily recognize objects and faces across a myriad of retinal images produced by each object. One hypothesis is that this tolerance (a.k.a. "invariance") is learned by relying on the fact that object identities are temporally stable. While we previously found neuronal evidence supporting this idea at the top of the nonhuman primate ventral visual stream (inferior temporal cortex, or IT), we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008